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Pincherle theorems equate convergence of a continued fraction to existence of a
recessive solution of the associated linear system. Matrix continued fractions have
recently been used in the study of singular potentials in high energy physics. The
matrix continued fractions and discrete Riccati equations previously studied by the
author, which were motivated by discrete control theory, had symplectic coefficient
matrices. However, the matrix continued fractions employed by Znojil do not have
symplectic structure. The previous definition of a recessive solution is modified to
allow extension of the Pincherle theorem to include a wider class of continued
fractions. � 1996 Academic Press, Inc.

1. Introduction

Znojil [14, p. 1959] considered ``matrix continued fractions''

Fk=I�(Ak+CkFk+1Bk+1), k=;, ;&1, ..., 1. (1)

with F;+1=0. If the Bk are nonsingular, then this recurrence can be writ-
ten as

Fk=B&1
k+1(Ck Fk+1+AkB&1

k+1)&1. (2)

Matrix methods in continued fractions were used by Schwerdtfeger [12].
Noncommutative continued fractions were studied by Pfluger [10] in the
context of a ring with identity and by Fair [7, 8] in a complex Banach
Algebra.

As a framework for the matrix continued fractions to be defined here,
observe that for n_n matrices A, B, C, D with real or complex entries, we
may define a 2n_2n matrix A and a matrix Mo� bius transformation TA(Z)
by

A=_A
C

B
D& TA(Z)=(AZ+B)(CZ+D)&1. (3)
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Make the formal definition TA(�)=AC&1. Now if the block entries of Ak

are allowed to be dependent on k, we could define a nonlinear recurrence
by

Zk=TAk
(Zk+1)=(AkZk+1+Bk)(CkZk+1+Dk)&1. (4)

Of course, the entries of Ak could be functions of a real variable x or of a
complex variable z. Also, the subscripts k need not be restricted to be
integers, but can be any real numbers spaced one unit apart; in particular,
Example 15 of [5] allows computation of ratios of Bessel functions
J&+1(x)�J&(x) by means of continued fractions. More generally, the Ak

could be functions of points tk as well as being functions of a real variable
x, or a complex variable z, or other parameters. We will assume
throughout that the Ak are nonsingular.

There are two standard ways of defining the approximants of a continued
fraction. For m fixed, we could define the k th approximant as the value of
Zm obtained by following this recurrence back from Zk+1=� or, alter-
natively, from Zk+1=0. The latter choice was used by Pfluger [10] and
Znojil [14]. The continued fraction is said to converge if this can be done
for large k and the resulting sequence of approximants converges. For the
case where all our Ak are 0 and all our Ck are nonsingular, as they are in
the studies by Wall [13], Pfluger [10], Fair [7, 8], and Znojil [14], these
two methods are equivalent, although the sequences of approximants are
shifted by one [13, 9]. Indeed, the approximants starting at Zk+2=�
would give Zk+1=0 and the question of convergence of the matrix con-
tinued fraction is equivalent to coming back from Z=�.

In the next section we make a more general definition of convergence for
arbitrary matrix continued fractions with the Ak nonsingular. That defini-
tion facilitates development of a Pincherle theorem.

2. Matrix Continued Fractions

Assume throughout that the 2n_2n matrices Ak of (3) are nonsingular.
The n_n blocks Ak , Bk , Ck , Dk can have real or complex entries. We now
make our definition of the sequence of approximants. For k�m, introduce
the notation

_Pk

Rk

Qk

Sk&=Am Am+1 } } } Ak (5)

and formally define the sequence of approximants as

TAm Am+1 } } } Ak
(�)=Pk R&1

k , for k=m, m+1, ... . (6)

189matrix continued fractions
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The continued fraction

[TAm Am+1 } } } Ak
(�)] (7)

is said to converge if the partial denominators Rk are nonsingular for large
k and the sequence [PkR&1

k ] has a limit. Note that the formal composite

TAm Am+1 } } } Ak
(Z) (8)

is an extension of the functional composite

TAm
b TAm+1

b } } } b TAk
(Z), k=m, m+1, ..., (9)

in the sense that when Z is in the domain of the functional composite, then
Z is in the domain of the formal composite and the functions agree [4].
Thus convergence of classical functional composite continued fractions
implies convergence of the formal composite continued fractions.

Since AmAm+1 } } } Ak=(AmAm+1 } } } Ak&1) Ak we have

_Pk

Rk

Qk

Sk&=_Pk&1

Rk&1

Qk&1

Sk&1&_
Ak

Ck

Bk

Dk& (10)

which also holds for k=m if we make the definitions

Pm&1=I, Qm&1=0, Rm&1=0, Sm&1=I. (11)

The key idea which connects the theory of continued fractions to the theory
of linear recurrences is obtained by a simple idea, namely, the transpose of
(10), is

_PT
k

QT
k

RT
k

S T
k &=AT

k _PT
k&1

QT
k&1

RT
k&1

S T
k&1& . (12)

Thus the pair Y1(k)=PT
k , Z1(k)=QT

k and the pair Y2(k)=RT
k , Z2(k)=S T

k

are solutions of the system

_Y(k)
Z(k)&=M(k) _Y(k&1)

Z(k&1)& (13)

where

M(k)#AT
k =_AT

k

BT
k

C T
k

DT
k &#_Ek

Gk

Fk

Hk& . (14)
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Relabel m&1 as l. Then the initial conditions (11) on the Pk , Qk , etc.,
become

Y1(l )=I, Z1(l )=0, Y2(l )=0, Z2(l )=I. (15)

Set

X(k)=_Y(k)
Z(k)& , then X(k)=M(k) X(k&1). (16)

The assumption that M(k) is nonsingular and the initial conditions on X1

and X2 make [X1(l ) X2(l )]=I2n and the pair X1 , X2 is a fundamental
solution, i.e., a basis, in the sense that any 2n_n solution X may be
expressed uniquely as X=XC1+XC2 for n_n constant matrices C1 and
C2 . Note that the solution space of 2n_n solutions X(k) together with
right multiplication by n_n constant matrices is a right unitary module
and is not a vector space because, except for the case of n=1, the scalars
come from a noncommutative ring with identity instead of a field. The
assumption of nonsingularity of the M(k) makes this module have well
defined dimension of 2.

We say that 2n_n solutions X0(k) and X(k) of (16) are linearly inde-
pendent if the only n_n constant matrices 10 and 1 such that

X0(k) 10+X(k) 1#0 (17)

are 10=0 and 1=0. This generalizes the definition used in [6, p. 6].
This conversion of the study of approximants of a continued fraction to

the study of linear recurrences makes possible the investigation of the non-
linear recurrences of functional composites of Mo� bius transformations, i.e.,
discrete matrix Riccati equations [1], by linear methods.

Classical theory, as well as Pfluger's matrix continued fractions,
employed linear three term recurrence relations, but as in differential equa-
tions it is more natural and convenient to deal with ``first order linear
systems.'' For completeness and for the application of Znojil [14], con-
tinued fractions with our blocks Ak=0 and nonsingular Ck are related to
three term recurrences as in the scalar case and the special matrix case of
Pfluger [10].

Proposition 1. Suppose Ak#0 and the Ck are nonsingular. Then the
partial numerators Pk and partial denominators Rk of the continued fraction
(7) must satisfy the three term recurrence

Uk+1C &1
k+1=Uk&1 Bk+UkC &1

k Dk (18)

191matrix continued fractions
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with the initial conditions

Pm&1=I, Pm=0, Rm&1=0, Rm=Cm . (19)

Proof. Because of the assumption that Ek=0 we have Y(k)=
Fk Z(k&1). Solve this for Z and replace Z in Z(k)=GkY(k&1)+
Hk Z(k&1) to obtain the three term recurrence

F &1
k+1Y(k+1)=GkY(k&1)+HkF &1

k Y(k). (20)

Take the transpose of both sides of this recurrence and set Uk=YT(k)
for (18). K

The assumption of convergence of the matrix continued fraction (7) is
equivalent to the assumptions that Y2(k) is nonsingular for large k and
there exists a matrix limit 1m such that

PkR&1
k =Y T

1 (k)(Y T
2 (k))&1 � 1m . (21)

If we relabel 1 T
m as 0(l ) with l=m&1, then transposing the above gives

Y &1
2 (k) Y1(k) � 0(l ). (22)

We summarize these observations as follows:

Proposition 2. Assume that the 2n_2n matrix coefficients Ak are non-
singular, Mk=AT

k , l=m&1, and X1(k), X2(k) are the solutions of (16)
defined by the initial conditions (15). The matrix continued fraction (7) con-
verges as k � � to a matrix limit 1m if and only if Y2(k) is nonsingular for
large k and Y &1

2 (k) Y1(k) � 0(l )=1 T
m .

Note that X is a 2n_n solution of (16) if and only if X=X1C1+X2C2

for some n_n constant matrices C1 and C2 . Hence convergence of the con-
tinued fraction (7) implies the limit (22) and

Y &1
2 (k) Y(k)=Y &1

2 (k) Y1(k) C1+C2 � 0(l ) C1+C2 . (23)

Thus the solution X0 chosen as

X0=X1&X20(l ) (24)

would have the properties Y0(k)=Y1(k)&Y2(k) 0(l ), Y0(l )=I&0=I is
nonsingular, Y2(k) is nonsingular for large k, and

Y &1
2 (k) Y0(k)=Y &1

2 (k) Y1(k)&0(l ) � 0(l )&0(l )=0. (25)

192 calvin d. ahlbrandt
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Now in what sense is X0 recessive? Suppose that X is a 2n_n solution such
that the 2n_2n partitioned matrix [X0(k) X(k)] is nonsingular; i.e., X and
X0 are linearly independent in the solution module. Note that non-
singularity at one value of k implies nonsingularity at all k because the
M(k) are all nonsingular. Since X1 , X2 is a basis, there exist n_n constant
matrices C1 and C2 such that X#X1C1+X2 C2 . Hence Y(k)=Y1(k) C1+
Y2(k) C2 and Y0(k)=Y1(k)&Y2(k) 0(l ) with Y &1

2 (k) Y0(k) � 0. Thus
Y&1

2 (k) Y(k)=Y &1
2 (k) Y1(k) C1+C2 � 0(l ) C1+C2 . Now if we knew

that 0(l ) C1+C2 were nonsingular, then we could conclude nonsingularity
of Y(k) for large k. Suppose that u is an n vector such that (0(l ) C1+
C2) u=0. Nonsingularity of [X0(k) X(k)] implies nonsingularity of

_Y0(l )
Z0(l )

Y(l )
Z(l )&=_ I

&0(l )
C1

C2& . (26)

However,

_ I
&0(l )

C1

C2&_
&C1u

u &=_0
0& (27)

since 0(l ) C1u+C2u=0. Thus u=0, 0(l ) C1+C2 is nonsingular, and
Y(k) is nonsingular for large k. Now as in [5] we wish to show that

Y&1(k) Y0(k) � 0. (28)

Observe that

Y&1(k) Y0(k) = [Y1(k) C1+Y2(k) C2]&1 [Y1(k)&Y2(k) 0(l )]

= (Y &1
2 (k) Y1(k) C1+C2)&1 [Y &1

2 (k) Y1(k)&0(l )]

� (0(l ) C1+C2)&1 (0(l )&0(l ))=0 (29)

as we wished to show. We now base our definition of recessive at � upon
the above properties of X0 .

We say that a 2n_n solution X0 is recessive at � if

1. X0 has full column rank of n.

2. If X=[ Y
Z] is any 2n_n solution such that [X0 X] is nonsingular,

i.e., X0 and X are linearly independent, then Y(k) is nonsingular for large
k and

Y&1(k) Y0(k) � 0. (30)

With this definition of a recessive solution at � we are now ready to
state a Pincherle theorem for these matrix continued fractions.

193matrix continued fractions
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Theorem 3. Assume nonsingular Ak . A necessary and sufficient condi-
tion for convergence of the continued fraction

[TAm Am+1 } } } Ak
(�)], k=m, m+1, ... . (31)

is that there exists a recessive solution at �,

X0=_Y0

Z0& (32)

of (16) with Y0(m&1) nonsingular. Furthermore, if the continued fraction
converges, then it converges to

1m=&[Z0(m&1) Y &1
0 (m&1)]T. (33)

Proof. We have proven necessity. In order to show sufficiency, assume
that there exists a recessive solution with Y0(l ) nonsingular. Then there
exist C1 and C2 such that X0=X1 C1+X2 C2 . Thus C1=Y0(l ) is non-
singular, C2=Z0(l ), and Y0(k)=Y1(k) C1+Y2(k) C2 . Now

_Y0(l )
Z0(l )

Y2(l )
Z2(l )&=_C1

C2

0
I& (34)

with C1 nonsingular implies a full rank [X0(l ) X2(l )]. However, X0

recessive allows us to conclude that Y2(k) is nonsingular for large k and
Y&1

2 (k) Y0(k) � 0, as k � �. Thus

Y&1
2 (k) Y0(k)=Y &1

2 (k) Y1(k) C1+C2 � 0 (35)

implies that Y &1
2 (k) Y1(k) � &C2C &1

1 and the continued fraction con-
verges to 1m=&(C2C &1

1 )T=&[Z0(l ) Y &1
0 (l )]T. Thus the Pincherle

theorem is established for this family of matrix continued fractions. K

We now show that recessive solutions with Y0(l ) nonsingular are essen-
tially unique.

Theorem 4. Assume nonsingular Ak .

(i) If X0 is recessive and K is any nonsingular n_n constant matrix,
then X0K is also recessive.

(ii) If X0 and X� 0 are recessive solutions with Y0(l ) and Y� 0(l ) non-
singular, then there exists a nonsingular constant matrix K such that

X� 0#X0K. (36)

194 calvin d. ahlbrandt
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Proof. For part (i), let X3=X0 K and let X be a solution with
[X3(l ) X(l )] nonsingular. Then

[X0(l ) X(l )] _K
0

0
I&

is nonsingular and [X0(l ) X(l )] is nonsingular. Because X0 is recessive we
have Y(k) nonsingular for large k, Y&1(k) Y0(k) � 0, and Y&1(k) Y3(k)
� 0 as k � �. Thus X3 is recessive.

For part (ii), the solutions X0(k) Y &1
0 (l ) and X� 0(k) Y� &1

0 (l ) are recessive
solutions with first components of I at l. If we can show that these solutions
have the same second component at l, then

X0(k) Y &1
0 (l )#X� 0(k) Y� &1

0 (l )

and X� 0(k)#X0(k) K for K=Y &1
0 (l ) Y� 0(l ). Thus it suffices to show that if

X0 and X� 0 are recessive solutions with Y0(l )=I=Y� 0(l ), then Z0(l )=Z� 0(l ).
Let X1 and X2 satisfy the initial conditions of (15). Then

[X0(l ) X2(l )]=_ I
Z0(l )

0
I& and [X� 0(l ) X2(l )]=_ I

Z� 0(l )
0
I&

are nonsingular. Thus Y2(k) must be nonsingular for large k, Y &1
2 Y0 � 0,

and Y &1
2 Y� 0 � 0. Use initial conditions at l to obtain Y0(k)=Y1(k)+

Y2(k) Z0(l ) and Y� 0(k)=Y1(k)+Y2(k) Z� 0(l ). Therefore,

Y&1
2 (k) Y0(k)=Y &1

2 (k) Y1(k)+Z0(l ) � 0

and

Y&1
2 (k) Y� 0(k)=Y &1

2 (k) Y1(k)+Z� 0(l ) � 0.

Thus Y &1
2 (k) Y1(k) has a limit. Uniqueness of limits implies that Z0(l )=

Z� 0(l ) as desired. K
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